Salt suppresses IFNγ inducible chemokines through the IFNγ-JAK1-STAT1 signaling pathway in proximal tubular cells

نویسندگان

  • Yohei Arai
  • Daiei Takahashi
  • Kenichi Asano
  • Masato Tanaka
  • Mayumi Oda
  • Shigeru B. H. Ko
  • Minoru S. H. Ko
  • Shintaro Mandai
  • Naohiro Nomura
  • Tatemitsu Rai
  • Shinichi Uchida
  • Eisei Sohara
چکیده

The mechanisms of immunoactivation by salt are now becoming clearer. However, those of immunosuppression remain unknown. Since clinical evidence indicates that salt protects proximal tubules from injury, we investigated mechanisms responsible for salt causing immunosuppression in proximal tubules. We focused on cytokine-related gene expression profiles in kidneys of mice fed a high salt diet using microarray analysis and found that both an interferon gamma (IFNγ) inducible chemokine, chemokine (C-X-C motif) ligand 9 (CXCL9), and receptor, CXCR3, were suppressed. We further revealed that a high salt concentration suppressed IFNγ inducible chemokines in HK2 proximal tubular cells. Finally, we demonstrated that a high salt concentration decreased IFNGR1 expression in the basolateral membrane of HK2 cells, leading to decreased phosphorylation of activation sites of Janus kinase 1 (JAK1) and Signal Transducers and Activator of Transcription 1 (STAT1), activators of chemokines. JAK inhibitor canceled the effect of a high salt concentration on STAT1 and chemokines, indicating that the JAK1-STAT1 signaling pathway is essential for this mechanism. In conclusion, a high salt concentration suppresses IFNγ-JAK1-STAT1 signaling pathways and chemokine expressions in proximal tubules. This finding may explain how salt ameliorates proximal tubular injury and offer a new insight into the linkage between salt and immunity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression

Inhibition of JAK1 or JAK2 in human tumor cells was previously shown to increase susceptibility of these cells to NK cell lysis. In the present study, we examined the cellular mechanisms that mediate this effect in hematopoietic tumor cell lines and primary tumor cells. Incubation of tumor cells with supernatant from activated NK cells or interferon-gamma (IFNγ)-induced activation of pSTAT1 and...

متن کامل

REQUIREMENT OF HISTONE DEACETYLASE ACTIVITY FOR SIGNALING BY STAT1 Running title: HDAC and signaling by IFNγ

STAT1 is a transcription factor which plays a crucial role in signaling by IFNs. In this study we demonstrated that inhibitors of HDAC activity, butyrate, TSA and SAHA, prevented IFNγ-induced JAK1 activation, STAT1 phosphorylation, its nuclear translocation, and STAT1-dependent gene activation. Furthermore, we showed that silencing of HDAC1, HDAC2 and HDAC3 through RNA interference markedly dec...

متن کامل

Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response

The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. T...

متن کامل

Toxoplasma gondii Triggers Phosphorylation and Nuclear Translocation of Dendritic Cell STAT1 while Simultaneously Blocking IFNγ-Induced STAT1 Transcriptional Activity

The protozoan Toxoplasma gondii actively modulates cytokine-induced JAK/STAT signaling pathways to facilitate survival within the host, including blocking IFNγ-mediated STAT1-dependent proinflammatory gene expression. We sought to further characterize inhibition of STAT1 signaling in infected murine dendritic cells (DC) because this cell type has not previously been examined, yet is known to se...

متن کامل

Trypanosoma cruzi Evades the Protective Role of Interferon-Gamma-Signaling in Parasite-Infected Cells

The protozoan parasite Trypanosoma cruzi is responsible for the zoonotic Chagas disease, a chronic and systemic infection in humans and warm-blooded animals typically leading to progressive dilated cardiomyopathy and gastrointestinal manifestations. In the present study, we report that the transcription factor STAT1 (signal transducer and activator of transcription 1) reduces the susceptibility...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017